INTRODUCTION TO CYTOLOGY

Courtney Schwichtenberg, DVM, DAVCP and Jennifer Bouschor, DVM, DACVP

Mast cell tumor

Outline

- Indications for Cytology
- Sample collection and handling
 - Collection method & slide preparation
- Sample evaluation
 - General approach
- Sample interpretation
 - Basic cytologic principles

Cool mesenchymal cell-sarcoma

Why Cytology??

 Fast, minimally invasive, and relatively inexpensive

Keratin

Indications

- Characterize a detected abnormality
 - Mass/infiltrative
 - Organomegaly
 - Ulcerative/exudative lesion
 - Effusion
- Staging of cancer
- Diagnostic work-up for FUO, hypercalcemia, monoclonal gammopathy
- Bone marrow aspiration for investigation of hematological abnormalities

Blastomycosis with neutrophilic inflammation

Limitations

- •Sometimes difficult to achieve a final diagnosis on a cytology sample
 - Histopathology (or additional diagnostics) may eventually be needed
 - May be non-representative or of low diagnostic quality
- •Check one slide before sending to external laboratory or waking up the patient
- •Interpretation requires experience
- 'Quick' stains are suboptimal for reliable cell morphology evaluation

Expectations

- Highly dependent upon the quality and cellularity of the sample submitted
- Quickest option for fluids, best option for bone marrow (BM) and round cell tumors
- Great for detecting inflammation and good at detect infection
- Detect neoplasia in *most* cases
- Differentiate between benign and malignant lesions and identify major tumor type in *many* cases
- The more complicated the lesion, the less clear the cytologic diagnosis

Outline

- Indications for Cytology
- Sample collection and handling
 - Collection method & slide preparation
- Sample evaluation
 - General approach
- Sample interpretation
 - Basic cytologic principles

Plasma cell tumor

- DIFFERENT LESIONS EXFOLIATE DIFFERENTLY...
 - In general:
 - Mesenchymal-poorly exfoliative
 - Epithelial & round cells (e.g., lymph node)-exfoliate well
- ...AND SPECIMEN MANAGEMENT AFFECTS ACCURACY OF INTERPRETATION...
 - E.g., neoplastic cells (especially lymphocytes) are very fragile
- ...THEREFORE, APPROPRIATE TECHNIQUE AND PREPARATION ARE KEY!

- ROUTINE SKIN PREP!
- Collection Method
 - Fine needle aspiration
 - Preparation
 - Blood smear technique
 - Squash preparation
 - Impression smear
 - Roll preparation

https://en.wikipedia.org/wiki/Hodgkin's_lymphoma#mediaviewer/File:Hodgkin_lymphoma_cytology_large.jpg

Mast cells, eosinophils, neutrophils

- Collection Method
 - Fine needle aspiration
 - Most common!
 - Solid tissue
 - Fluid aspiration
 - Supplies
 - 6 or 12 mL syringe
 - 20 or 22 gauge needle (bigger is not better)
 - NEW slides (wipe!)

- +/- Ultrasound guidance
- Needle vs. needle + syringe
- Aspiration vs. capillary
 - Vascular lesion?
 - Release negative pressure!
- If you have doubts about quality, you're probably right!

- Collection Method
 - Fine needle aspiration
 - Preparation
 - Blood smear technique
 - » Ideal for more vascular lesions
 - "Squash" preparation
 - » Ideal for little blood/fluid, semisolid, mucoid/thick specimens
 - » Don't actually squash...a firm, gentle, continuous pull!

Broken cells

- Collection Method
 - Fine needle aspiration
 - Impression smear/Touch Imprint
 - Ideal for ulcerated lesions & evaluation of cut surface of biopsy
 - If ulcerated, MUST aggressively debride!
 - BLOT tissue until DRY
 - Touch several areas to slide should be sticky!
 - Fibrous tissue samples can be "roughened" with a scalpel

https://link.springer.com/article/10.1186/s12917-014-0201-z

Neutrophilic inflammation with intracellular cocci

- Collection Method
 - Fine needle aspiration
 - Impression smear
 - Roll preparation
 - Used for very small tissue samples, bone marrow cores
 - GENTLY roll the sample along the slide using a needle

- Submitting Slides
 - Properly label the slide!!!
 - Patient ID
 - Clearly identify sample/tissue of origin
 - Specify multiple samples (i.e., which lymph nodes)
 - FILL OUT THE HISTORY FORM
 - Provide relevant clinical information!!!

- Submitting Slides
 - A word on staining...
 - Always stain the "worst" slide and assess adequacy (send this too!)
 - Always send unstained slides
 - KEEP AWAY FROM FORMALIN FIXED SAMPLES!

- Romanowsky-type stains
 - "Diff-Quik"
 - Mast cell granules
 - Wright Giemsa
- New methylene blue stain
 - Non-permanent aqueous stain
 - Useful for ID'ing mast cells, fungal organisms, reticulocytes, Heinz bodies

Outline

- Indications for Cytology
- Sample collection and handling
 - Collection method & slide preparation
- Sample evaluation
 - General approach
- Sample interpretation
 - Basic cytologic principles

- GENERAL APPROACH: JUST LIKE A PHYSICAL EXAM!
 - Systematic: same order, every time!
 - Just like TPR: Before even looking, always ask yourself "what is normal for this tissue?"
 - Start from big picture and zoom in
 - Resist the urge to go to 100x!

- 4-10x
 - General impression: similar to observing

your patient from afar as you are taking a history from an owner

- Cellularity?
- Single population or mixed?
- How are cells distributed?
- Background?
- Blood contamination?
- Large structures (infectious agents, big cells)?
- What areas do I want to look at more closely?

- 40-50x
 - Similar to hands on physical exam
 - Focus on diagnostic areas look at several
 - What are the cell populations that are present?
 - Are these the cells you were expecting?
 - Are they increased or decreased in number?
 - Do they look normal or abnormal?
 - Any infectious agents (e.g., bacteria)?

Sarcoma with matrix

- 100x
 - Zoning in on the abnormalities found on PE
 - What are the features of the normal/abnormal cells?
 - Shape? Size? Cytoplasm?Nuclear features? Etc...
 - Look for small organisms

Checklist:

- Sample adequacy and cellularity/number of cells
 - E.g., "mild, moderate, or highly cellular"
- Describe cell populations present with relative frequency, type of cell
 - E.g., "large numbers of small lymphocytes"
- Do the cells from the same population look alike?
- Association with other cells
- Cell margins? Shape?
- Cytoplasm: Amount? Color? Inclusions?
- Nucleus: Number? Shape? Chromatin? Nucleoli?
- Are there abnormal features?
 - E.g., "mitotic figures"
- Describe background
 - E.g., "proteinaceous"
- Are there any etiologic agents or other materials?

Outline

- Indications for Cytology
- Sample collection and handling
 - Collection method & slide preparation
- Sample evaluation
 - General approach
- Sample interpretation
 - Basic cytologic principles

Anal gland adenocarcinoma

- Normal or abnormal (i.e., is this what I expected)?
- Inflammatory vs. tissue (neoplasia)
- How many populations?
- Cellular features?
 - Reactive/Hyperplastic? Inflammatory? Neoplastic?
- Criteria of malignancy?
- Other processes
 - Infectious agents? Are they primary or secondary?
 - Hemorrhage?

- Abnormal → one population →
 - Hyperplastic or Reactive Tissue
 - Looks similar to normal tissue, just more of it than you would expect
 - Cells are often uniform or have very mild changes
 - Epithelial clusters are well-organized
 - EXAMPLES:
 - Reactive fibroplasia
 - Glandular hyperplasia (such as BPH)
 - Reactive lymphoid hyperplasia
 - Epithelial hyperplasia

- Abnormal \rightarrow one population \rightarrow
 - Inflammatory Lesion
 - CHARACTERIZE BY THE PREDOMINANT CELL TYPE:
 - Neutrophilic/suppurative
 - Lymphocytic or lymphoplasmacytic
 - Histiocytic/macrophagic
 - Eosinophilic (>10%)
 - Mixed (no clear predominant cell type)
 - ALWAYS LOOK FOR A CAUSE!!

Mycotic infection with neutrophilic inflammation

- Abnormal \rightarrow one population \rightarrow
 - Neoplasia
 - CHARACTERIZE BY CELL TYPE
 - Epithelial
 - Mesenchymal
 - Round
 - Neuroendocrine
 - BENIGN OR MALIGNANT?
 - Are there criteria of malignancy?

carcinoma

Neoplastic Characterization

- Epithelial
- Mesenchymal
- Round cell
- Neuroendocrine

Epithelial tumors

- Benign or malignant (e.g., carcinoma)
- Often exfoliate well
- Cells often present in cohesive clusters or sheets
 - "Sticky" or associate with one another
- Distinct cell margins
- Often cannot determine tissue of origin
 → Histopath!
 - Exception: Squamous cell carcinoma

http://www.eclinpath.com/atlas/cytology-2/feline-peritoneal-fluid/ carcinoma

Mesenchymal Tumors

- Differentiate from reactive fibroplasia
- Often low cellularity
- Cells individualized or in loose aggregates
- May be associated with matrix material
- Variably-distinct to indistinct cell margins
- Spindloid, fusiform
- Again often cannot tell tissue of origin

Round Cell Tumors

- Usually highly cellular
- Cells are individualized or discrete
 - Are red cells squeezing between?
- Round/rounded cell margins
- Other cell types present?
 - E.g., eosinophils in mast cell tumors

Poorly granulated mast cell tumor

Round Cell Tumors-T-LYMPH

- Transmissible venereal tumor (TVT)
- **Ly**mphoma
- Mast cell tumor
- Plasma cell tumor
- Histiocytoma
- *Melanoma

Neuroendocrine Tumors

- Often appear as free nuclei on lakes of cytoplasm
- Specific types:
 - Anal sac adenocarcinoma (not actually neuroendocrine)
 - Thyroid, insulinoma, other...

http://the-vet-life.tumblr.com/post/35267419138/alright-so-i-bombed-my-last-viva-i-got-asked

Anal gland adenocarcinoma

Criteria of Malignancy

- Anisocytosis (variation in cell size)
- Anisokaryosis (variation in nuclear size)
- Increased nuclear:cytoplasmic ratio (N:C)
- Multinucleation
- Multiple and prominent nucleoli
- Abnormal mitotic figures

http://pathology.jhu.edu/cytopath_tut/Considerations/ShowImage.cfm?ModuleID=1&CaseInfoID=3&ImageID=84&ConsiderID=7 carcinoma