"

11 Refresher: Linear Algebra

In this appendix, we state basic facts of linear algebra concerning matrices, eigenvalues and eigenvectors. No proofs are given and the reader should consult linear algebra texts for more details. The brief review presented below, although far from being complete, should however provide sufficient information for a reader to follow most of the linear stability arguments made in the previous chapters.

Vector spaces

Definitions

  • S is a real (resp. complex) vector space if and only if it is closed under addition and under multiplication by a scalar. In other words,

(1)x,yS,x+yS(2)xS,αR (resp. C),αxS.

  • The vectors in {uiS,i=1n} are linearly independent if and only if any linear combination equal to zero must have all of its coefficients equal to zero. In other words,

(3){αi,i=1,n}R (or C),(4)i=1nαiui=0αi=0,i=1,n.

  • S is finite dimensional if there exists a finite set of linearly independent vectors that span S.
  • Such a set is called a basis of S. In what follows, we are only concerned with finite dimensional vector spaces.
  • The dimension of a finite dimensional vector space S is the number of vectors in any basis of S.

Linear mappings

We say that the mapping T:SU from a vector space S to a vector space U is linear if for every x,yS,

(5)T(x+y)=T(x)+T(y)(6)T(αx)=αT(x),

where αR (resp. αC) if S and U are vector spaces over R (resp. C).

Properties of linear mappings

  • The range RT of T, which is the image of S under T, is a linear subspace of U.
  • The nullspace or kernel of T is a linear subspace of S. It is defined as the set NT of vectors of S whose image under T is zero,

NT={xS|T(x)=0}.

  • The dimensions of RT and NT are such that

dim(RT)+dim(NT)=dim(S).

Matrices

Every linear mapping

T:RnRmxu

can be written as

ui=j=1nAijxji=1,,m;u=(u1u2um);x=(x1x2xn),

where A(Aij) is a m×n (m rows, n columns) matrix with real entries. By convention, Aij is the entry at the intersection of the ith row and jth column of A.

Note that once a basis has been chosen, every linear vector space of dimension n is isomorphic to Rn. We can then represent any linear mapping between two finite dimensional vector spaces by a matrix. In what follows, we will only consider matrices with real coefficients.

Definitions

  • The transpose of the matrix A is AT such that (AijT)=(Aji).
  • The rank of the matrix A associated with the linear transformation T is the dimension of RT. It is also equal to the rank of AT.
  • The determinant of a 2×2 matrix, A=(abcd) is

detA=|abcd|=adbc.

  • The determinant of an n×n matrix A=(Aij) can be calculated by means of the formula below, where i is one row of A and Mij is the matrix obtained from A by deleting row i and column j:

detA=j=1n(1)i+jAijdetMij.

  • A similar formula exists for expanding detA with respect to one column of A.
  • The trace Tr(A) of a square matrix A is the sum of the diagonal entries of A.

Properties

  • If A is an m×n matrix, the system Ax=b has at least one solution for every b if and only if the columns of A span Rm. Then the rank of A, r, is such that r=m, which implies mn.
  • The system Ax=b has at most one solution for every b if and only if the columns of A are linearly independent, i.e. if and only if the nullspace of A is trivial. Then, r=n, which implies nm.
  • Let A be an n×n matrix. Then, the following statements are equivalent.
    • The equation AX=b has exactly one solution.
    • The range of A is Rn.
    • The nullspace of A is trivial.
    • The matrix A is invertible.
    • The determinant of A, detA, is non-zero.

Eigenvalues and eigenvectors

Definitions

Let A be a real n×n matrix.

  • The vector hS is an eigenvector of A with eigenvalue aC if

Ah=ah,h0.

  • The vector fS is a generalized eigenvector of A with eigenvalue a if, for some positive integer m1, we have

(AaIn)f0,(AaIn)mf=0,f0.

In the above equation, In is the n×n identity matrix. To find the eigenvalues and eigenvectors of a matrix, first note that if u is an eigenvector of a matrix A with eigenvalue a, then the equation

(AaIn)u=0,(A1.1)

has a non-trivial solution. This implies that

det(AaI)=0,(A1.2)

and one can therefore find the eigenvalues of A by solving this equation.

Properties

  • The left-hand-side of (A1.2) is a polynomial of degree n in a, called the characteristic polynomial of A.
  • The characteristic polynomial of A has n complex roots, which are the eigenvalues of A.
  • Since A has real entries, if a is an eigenvalue of A, so is its complex conjugate a. As a consequence, the eigenvalues of A are either real, or complex conjugate pairs.
  • The trace of A is the sum of the eigenvalues of A.
  • The determinant of A is the product of the eigenvalues of A.

Once an eigenvalue is found, one needs to solve (A1.1) in order to obtain a corresponding eigenvector. There is not one such eigenvector, but a linear subspace thereof. Each of these eigenspaces is an invariant subspace of the linear transformation T associated with the matrix A. The vector space S, or equivalently Rn, can thus be viewed as the sum of the eigenspaces of A, and this decomposition gives a geometric picture of how T acts on S.

 

Food for thought

Problem 1

Show that eigenvectors u and v of a matrix A corresponding to different eigenvalues are linearly independent.


Problem 2

Find the determinant of the following matrix

C=[22643126416].


Problem 3

Find the eigenvalues and eigenvectors of the following matrix

B=[411141112].


Problem 4

Consider the transformation from R5 to R3 defined by

T(x)=[02x14x2+x5x2+x3+x5],wherex=[x1x2x3x4x5].

  1. Is T a linear transformation ? Why or why not ?
  2. Find the matrix of T relative to the standard bases of R5 and R3.

Problem 5

Consider the matrix

A=[122442434211323].

  1. Find a basis for the column space (or range) of A. Justify your answer.
  2. Find a basis for the null space of A. Justify your answer.
  3. What is the rank of A?

Problem 6

Consider the space P2 of polynomials of degree less than or equal to 2, and let S={q0,q1,q2,q3,q4} be a set of polynomials in P2, where

q0(t)=6tt2,q1(t)=1t,q2(t)=t+1q3(t)=4, q4(t)=22t+t2.

  1. Find the coordinates of the polynomial Q relative to the standard basis of P2, where Q(t)=4t22t+10.
  2. Give a basis of P2 which consists of vectors in S. Explain how you choose the vectors.
  3. Find the coordinates of the polynomial Q defined in Question #1 relative to the basis you found in Question #2.

Problem 7

Consider the following vectors in R4.

(7)v1=[1234],v2=[0101],v3=[1010],(8)v4=[1112],v5=[1111].

Show that {v1,v2,v3,v4,v5} is a linearly dependent set.